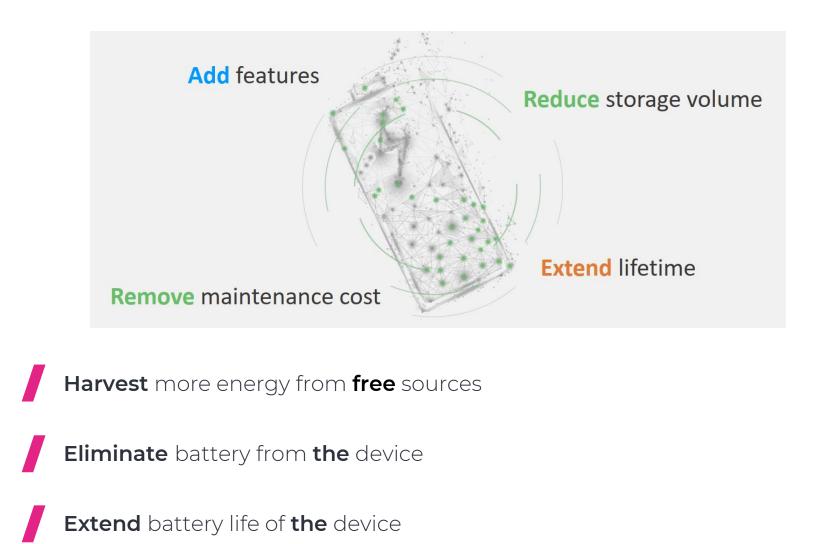
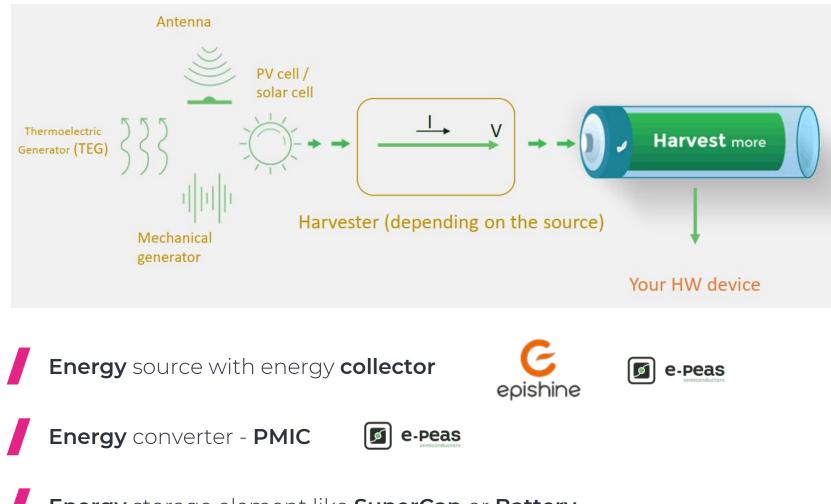
Powering your application using Energy Harvesting technology

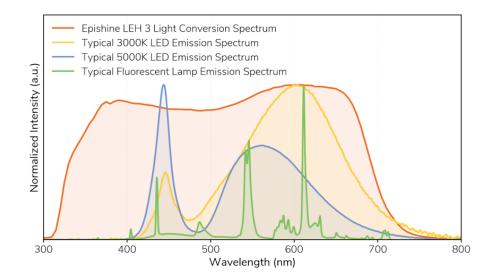

COMPUTER CONTROLS

ENABLING YOUR SUCCESS


Kamil Prus BDM / FAE Poland & Baltics States

Energy storage element like SuperCap or Battery

Energy converters e-peas کر Solar/Light Ŏ. Thermal **AC Sources** Intermittent ditte É _ Sources mu шш e-peas AEM10941 C e-peas e peas AEM30940 AEM20940 AEM30940 AEM10941 Boost AEM10330 AEM30330 AEM00330 Buck-Boost 20,2022 Buck-Boost AEM00300 **Battery Charger** 20,2022 Boost AEM10900 **Battery Charger** Wearable


COMPUTER CONTROLS

Indoor PV cells

Product Code	Open Circuit Voltage ^{1,2} (V)	Short Circuit Current ^{1,2} (µA)	Output Power ^{1,2} (μW)	Cells	A (mm)	B (mm)	C (mm)	D (mm)
LEH3_50x50_6_10	3.8	147	418	6	50	50	71.5	60
LEH3_50x50_8_10	5.05	105	375	8	50	50	71.5	60
LEH3_50x30_6_10	3.8	88	250	6	50	30	71.5	40
LEH3_50x30_8_10	5.05	62	221	8	50	30	71.5	40
LEH3_50x20_6_10	3.8	59	167	6	50	20	71.5	30
LEH3_50x20_8_10	5.05	42	150	8	50	20	71.5	30

ENABLING YOUR SUCCESS

How to proceed ???

COMPUTER CONTROLS	
CONTROLS	

Question	
Vhich type of source are available in the environment ? (Photovoltaic / thermal / mechan	nical / RF)
Vhere will the application be placed or used (indoor, outdoor, moving spot) ?	
egarding the load, is it already defined (sensors, μC, radio ?) f so, could you share the part number and high-level schematic ?	
ould you describe the consumption profile (wake up, active time, passive time) ? Vhen must it be working and when should it be sleeping ?	
f known, what is the average power consumption of the load ? (mW) to you know the consumption of each component ? (mW) bid you have measurement of the consumption ?	
using radio communication, did you define the protocol ?	
using radio communication, at which frequency do you need to communicate ? Yo you have any idea of the radio consumption during active time ? (mW)	
part from the radio is there any peak current (due to sensor or the electronic around) ?	' (Y/N)
yes, please describe the peak current in terms of ampermeter (A) and seconds (s)	
Vhich timelife do you target ? (years)	
s there any constraint on the start up time (if completely discharged)? (s)	
f no power available at the inputs, how long the application must be working ? (hours/d	lays)
low much time the device will be used when the power at the source is available (an estir	nate)?
low much time the device will be used when the power at the source is not available ? (ar	estimate)

Energy budget calculation

Technical details about the system (24 hours)				
Consumed Energy E LOAD (over 24 hours)	1.037 J			
LDO Efficiency	70%			
Technical details about the harvester				
Energy E SRC (over 24 hours)	2.204 J			
Internal BOOST Efficiency	90%			
Duration with light available	8 hours			
Minimal power required at the harvester P SRC	76.543 uW			
Primary battery as back-up	NA			
Technical details about the storage				
Autonomy without any Power from the Source	16 hours			
Stored Energy E STORED	1.323 J			
Supercapacitor Size (Between 2.8V and 4.5V)	213.2 F			
LIC Size (Between 2.5V and 3.8V)	323 F			
Rechargeable Battery (Between 3V and 4.05V)	102.1 mAh			
Temperature Working Range	Industrial			

Real use cases

COMPUTER CONTROLS

Market segments applications

